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Optical characterization of biological materials using an inverse radiation transport approach is useful in biomedical diagnosis
and nondestructive quality evaluation of food and agricultural products. However, accurate determination of the optical
properties from intact biological materials based on light transport theory is challenging because of the complex mathematical
model and sophisticated instrumentation and experimental procedure.

Different approaches and methods have been developed for determining the optical properties of turbid media In this work a
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Different approaches and methods have been developed for determining the optical properties of turbid media. In this work, a
diffusion theory model for spatially-resolved steady-state reflectance was chosen because it provides accurate description of
radiation transport in turbid media, needs less computational time, and is particularly useful for nondestructive measurement.

The optical parameter estimation was formulated as a nonlinear least squares optimization problem based on several important
assumptions (i.e., constant variance errors, uncorrelated errors, and the Gaussian distribution of errors). Proper data
transformation and weighting methods should be considered when some of the assumptions are violated. Moreover, to improve
the accuracy of the parameter estimation, the inverse algorithm needs to be optimized and the information involving model
efficiency, curve fitting errors, and parameter characteristics should be acquired and analyzed.
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Fig. 2. Sensitivity coefficients of the optical parameters (µa =0.006 mm-1 & µs’=0.40 mm-1) as functions of the source-detector distance for ODM, LTDM, 
ITDM, and RWDM. Solid curves stand for R, dash curves for µa and dot curves for µs’.
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FORWARD PROBLEM

OBJECTIVES
• Examine different data transformation and weighting methods for nonlinear least squares estimates;
•   Perform sensitivity analysis to determine an appropriate data transformation/weighting method to improve the inverse    

algorithm;
• Assess the robustness of the diffusion model and the inverse algorithm using statistical analysis.

Diffusion Model
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Monte Carlo Simulation

Light transfer in a medium is governed by the radiation transport theory. For most biological materials in which light scattering is
dominant, diffusion approximation to the radiation transport equation is valid. The diffuse reflectance at the surface of the turbid
medium (R) as a function of the source-detector distance (r) as well as two unknown optical parameters (µa & µs’) of the medium
is given by

where µa and µs’ are absorption and reduced scattering coefficients, respectively.
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Fig. 4. Residual histograms for the reflectance
data from LTDM with (a) µa =0.006 mm-1 &
µs’=0.40 mm-1, and (b) µa =0.057 mm-1 &
µs’=4.00 mm-1.

-0.2 -0.1 0 0.1 0.2
Residual (mm-2)

Fig. 3. Relative errors of estimating 29 groups of (a) µa and (b) µs’ by the original
model, and the three data transformation and relative weighting methods: ODM (•),

LTDM (◦), ITDM ( ), RWDM (∆).
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INVERSE PROBLEM

Monte Carlo Simulation

For accurate estimation of the optical parameters of turbid media, the diffusion model
and inverse algorithm were validated by Monte Carlo (MC) simulations. Figure 1
illustrates the MC simulation for estimating diffuse reflectance and internal photon
absorption in a turbid medium. Fig. 1. Monte Carlo simulation for diffuse reflectance and 

internal photon absorption in a turbid medium.
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Nonlinear Least Squares Inverse Algorithm
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Fig. 5. 3-D plot of sum of
squares for (a) group 25
with µa =0.006 mm-1 &
µs’=0.40 mm-1, and (b)
group 30 with µa =0.057
mm-1 & µs’=4.00 mm-1

using the LTDM method.
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Group no. parameter True value
(mm-1)

Estimated 
value (mm-1)

Standard
Error (mm-1)

Relative 
Error (%)

95% asymptotic 
confidence interval

25
µa 0.006 0.007 0.0015 16.7 [0.0069, 0.0072]

µs’ 0.40 0.38 0.023 -5.0 [0.377, 0.381]

30
µa 0.057 0.059 0.0129 3.5 [0.0560, 0.0616]

’ 4 00 3 88 0 660 3 0 [3 734 4 002]

Nonlinear least squares method was used to find the minimum of the sum of squares of the difference between the true
reflectance and predicted reflectance values with estimated parameters. A large-scale algorithm such as a subspace trust-region
method based on the interior-reflective Newton approach was selected to achieve the algorithm optimization.

Data Transformation and Weighting Methods

Logarithm-transformed diffusion model (LTDM):

Integral-transformed diffusion model (ITDM):

Diffusion model with relative weighting (RWDM):
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Table 1. Statistical results for estimating the optical parameters using the logarithm-transformed diffusion model (LTDM).

• Sensitivity analysis demonstrates that the reduced scattering coefficient can be estimated more accurately than the
absorption coefficient, which is validated by Monte Carlo simulation results.

• The logarithm and integral transformation of the original data and the relative weighting method greatly improve the
estimations of the two optical parameters with the relative errors of 10.4%, 10.7%, and 11.4% for µa, and 6.6%, 7.0% and
7.1% for µs’.

• Further statistical analysis shows that the logarithm transformation and relative weighting methods can improve the inverse

µs’ 4.00 3.88 0.660 -3.0 [3.734, 4.002]

SIMULATION EXPERIMENTS
To validate the diffusion model and the inverse algorithm using MC simulations, the medium was considered to be turbid and
semi-infinite MC simulations were performed with the absorption and reduced scattering coefficients as two input parameters

CONCLUSIONS

Sensitivity Analysis

Sensitivity coefficients of original diffusion model (ODM), LTDM, ITDM, and RWDM are calculated by
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∂ where β represents optical parameters µa and µs’.

• Further statistical analysis shows that the logarithm transformation and relative weighting methods can improve the inverse
algorithm to obtain more reliable estimations of the two optical parameters.

semi infinite. MC simulations were performed with the absorption and reduced scattering coefficients as two input parameters,
which determine the simulation results.

Thirty-six different combinations of µa and µs’ were selected, which span a large range of values: 0.004<µa<0.800 mm-1,
0.40<µs’<4.00 mm-1, and 5< µs’/µa<100. These values were chosen based on the published data for the optical properties of fruit
and other food products. The refractive index of the medium was assumed to be 1.35, similar to that of fruit. A total of 3×106

photons and 0.1 mm spatial resolution of both radial distance and depth were used to produce the reflectance for the spatial
distance of 0.1- 10 mm. The MC generated diffuse reflectance profiles were then fitted by the inverse algorithm for the diffusion
model to deduce the optical properties of the media.
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